Evidence Based This post has 11 references

Telomerase, Telomeres & Aging

Written by Puya Yazdi, MD | Last updated:
Medically reviewed by
SelfDecode Science Team | Written by Puya Yazdi, MD | Last updated:

Every time cells divide, chromosomes get a little bit shorter. That’s why cells have telomeres – non-coding sequences of DNA that sit at the ends of chromosomes and protect genes from damage. Read on to learn more about telomerase, telomeres, and their role in aging.

What is Telomerase?

Telomeres are sequences of DNA at the ends of each chromosome. They don’t code for anything; instead, their job is to protect DNA from damage while it’s being copied. Each time cells divide, DNA duplicates, and telomeres get shorter [1].

When telomeres are too short to protect DNA, cells enter a state called senescence: they stop dividing. Ultimately, if these cells trigger the DNA damage response (DDR), they will be tagged for death [1, 2].

Telomerase is an enzyme that adds more nucleotides to the end of the telomere, elongating them. This allows cells to divide and grow for longer [1].

Telomerase is an enzyme that lengthens telomeres, the sequences of protective DNA at the ends of chromosomes.

What is the CST Complex?

The CST complex is a structure that helps to protect your chromosomes from damage. CST doesn’t stand for a longer name; instead, it’s an abbreviation of the three proteins making up the complex: CTC1, STN1, and TEN1 [3, 4].

The CST complex is what’s called “evolutionarily conserved,” meaning that it’s almost identical across species as distantly related as humans and yeast. When a single gene, protein, or protein complex is common to so many species, researchers can be fairly sure it’s important [3].

But what does it do? The CST complex appears to have two major functions:

  • Physically protecting telomeres (and the rest of the chromosome) from damage [3]
  • Regulating the telomerase enzyme by both supporting its function & putting a limit on how often it can bind to DNA [5, 3]

In short, the CST complex’s job is to make sure telomeres don’t get too short or too long, and it’s probably been doing this job for hundreds of millions of years [3].

CST in Humans

Humans have multiple mechanisms to protect our telomeres, including the CST complex and another protein complex called shelterin [3, 6].

Of these, shelterin is considered more important; it is the major obstacle protecting your telomeres from damage. However, if certain components of shelterin (POT1 and TPP1) are missing or reduced, the CST complex is there to pick up the slack, so to speak [3, 6].

Recent research has also shown that the CST complex helps your cells safely lengthen your telomeres during cell division. Thus, if any single protein in the CST complex isn’t functioning well, telomeres could get dangerously short, resulting in premature aging [5].

Telomeres and the Science of Aging

Researchers have long suspected that shortening telomeres are among the causes of aging.

In adult tissues, there isn’t enough telomerase to keep up with cell division. Gradually, throughout the human lifespan, telomeres get shorter and shorter, and more and more cells enter senescence. Thus, older people can’t grow and regenerate their tissues as effectively as younger people [1, 2].

Short telomeres have also been linked with degenerative diseases and premature aging in humans. In this light, many researchers have attempted to discover whether activating telomerase and elongating telomeres can prevent or delay aging in humans and animals [1, 2, 7].

Gene Therapy for Mice

Telomere extension has already worked as an anti-aging strategy in animal models.

In one memorable study, middle-aged and older mice (one and two years old) were treated with gene therapy that increased their TERT expression. Those that received the treatment lived for 13-24% longer than those without, and there were no apparent side effects of the procedure [7].

However, animal research is infamously difficult to reproduce in humans. Over the decades, many mouse and rat studies have produced spectacular results which then never become relevant to human health. Researchers are hard at work trying to find the key to human longevity, but they haven’t found it yet.

Cells with shortened telomeres can’t divide, and mice that received gene therapy to increase TERT expression lived longer. Thus, shortening telomeres may play a role in aging.

How Much Telomerase is Best?

Given what we’ve just discussed, you might think that the answer is simple: the more active your telomerase (and the longer your telomeres), the better. However, there is no scientific consensus on the ideal range of telomerase activity or the ideal telomere length [1].

Too Much of a Good Thing?

Telomere length is a strange and controversial field of research, and long telomeres seem to have positive and negative effects, depending on the study and the frame of reference. Most notably, dangerous cancer cells tend to have high telomerase activity and unusually long telomeres [8, 1].

Some genetic variants, like rs2736100, are especially confusing. The homozygous ‘AA’ genotype, which reduces telomerase activity, is linked with testicular cancer and progressive scarring of the lungs [9, 10].

In this variant, the ‘C’ allele seems to increase telomerase activity and lengthen the telomeres, so you might think it would increase longevity. However, people with even one copy of the ‘C’ allele developed glioma, a type of dangerous brain cancer, 60% more often than those who don’t [9, 10].

Possible Interactions in Cancer Cells

To recap: many variants that increase TERT activity are also linked with cancer, but gene therapy to increase TERT in mice hasn’t caused cancer. Why this discrepancy? Researchers have not reached a consensus, but there are a few possible answers.

One possibility raised by researchers is that TERT doesn’t itself increase cancer risk, but instead amplifies the effect of other genes and mutations that do by allowing unlimited cell proliferation the tumor cells. A hallmark of cancer cells is that they can divide and proliferate indefinitely, and TERT mutations are among the most likely mechanisms behind this ability [11, 1].

TERT variants may also have other effects on tumor cells and future studies will be needed to fully understand their role in cancer.

Longer telomeres and more telomerase activity have been linked to cancer. Most likely because this allows the cancer cells to keep dividing.

Check out our post on TERT (the gene that codes for telomerase) on SelfDecode to learn more.

About the Author

Puya Yazdi

Puya Yazdi

Dr. Puya Yazdi is a physician-scientist with 14+ years of experience in clinical medicine, life sciences, biotechnology, and nutraceuticals.
As a physician-scientist with expertise in genomics, biotechnology, and nutraceuticals, he has made it his mission to bring precision medicine to the bedside and help transform healthcare in the 21st century. He received his undergraduate education at the University of California at Irvine, a Medical Doctorate from the University of Southern California, and was a Resident Physician at Stanford University. He then proceeded to serve as a Clinical Fellow of The California Institute of Regenerative Medicine at The University of California at Irvine, where he conducted research of stem cells, epigenetics, and genomics. He was also a Medical Director for Cyvex Nutrition before serving as president of Systomic Health, a biotechnology consulting agency, where he served as an expert on genomics and other high-throughput technologies. His previous clients include Allergan, Caladrius Biosciences, and Omega Protein. He has a history of peer-reviewed publications, intellectual property discoveries (patents, etc.), clinical trial design, and a thorough knowledge of the regulatory landscape in biotechnology. He is leading our entire scientific and medical team in order to ensure accuracy and scientific validity of our content and products.


1 Star2 Stars3 Stars4 Stars5 Stars
(No Ratings Yet)

FDA Compliance

The information on this website has not been evaluated by the Food & Drug Administration or any other medical body. We do not aim to diagnose, treat, cure or prevent any illness or disease. Information is shared for educational purposes only. You must consult your doctor before acting on any content on this website, especially if you are pregnant, nursing, taking medication, or have a medical condition.

Leave a Reply

Your email address will not be published. Required fields are marked *

Related Articles View All